In the Table, the first Figure signifies the Number of the Tracts: the second, the Page, as it is remarked in the same.

Agriculture, Heads of Inquiries concerning, *num. 5. pag. 91.
Anatomy, see Fles, Blood, Animals, Lugus, Petrifaction, Tafse; item, Stien, Graeff, Bellinus, Redi, in the List of Books.
Animals; one may live by the blood of another, the whole mass of his own blood being drawn out, and the blood of another infused in the mean time, *20. 353. See Bloods

Astronomical Remarks of a New Star seen by Heselenius in Petroleis Ignii, which he supposed to be the same which Kepler law A. 1661, and continued until 1662, and was not seen again till 1664. and then almost always hiding it fell till 24. Nov. 1666. That, seen by Kepler was of the third magnitude; this now, of the sixth or seventh. Whether it changes place and magnitude, 19. 349. The Scheme, 21. 372. A New Star in Collo Centauris, observed from 1658 to 1661, 1665, 1666. with its vicissitudes and periods, and causes of change, opened by Bullialldus, who conceives the biggest part of that round body to be oblique, and the whole to turn about its own center, 21. 382. Another New Star called Newtona in Circulo Andromedae, seen when the Comet appeared 1665, observed by the said Bullialldus to appear and disappear by turns, ibid. 383. A method for observing the Eclipses of the Moon, free from the common Inconveniences, by M. Room, 22. 387.

B

Aroscope. See Air and Artificial Instruments.

Blood. The new Operation of Transfusing blood into the veins, out of one Animal into another; with considerations upon it, 10. 353. The first Rise of this Invention, 7. 208. The Success, 19. 352. Proposals and Queries, for the improvement of this Experiment, by M. Boyle, 22. 385, 386.

Little Blood-letting in China, 14. 249. Blood found in some men's veins like Milk, or of the colour of Milk, 6. 100, again p. 117, 119. and again 8. 139.

A Bulus in Hungary good as Belle Armech, 11. 111.

The Eonian Stone, see Light or Stone, 21. 375.

Books abbreviated, or recited:


Ge. Blasi. Anatomica Medullae Spinalis & Nervorum in e procedientium, abbrev. n. 22.

Mr. Boyle of Thermometers and History of Cold, abbrev. 1. 8. m. 3. 46.

His Hydrostatical Paradoxes abbrev. 8. 145. more largely 10. 173.

His Origin of Forms and Qualities, 8. 145. abbreviated 11. 391.

Monsieur de Bourges his Relation of the Bishop of Ewyte his Voyages in Turkey, Persia, India, abbrev. 18. 314.


Des Cartes his Third Volume of Letters, 22.

De la Chambre's Causes of the inundation of the Nile, abbrev. 14. 251.

Cordomay of the difference of Bodies and Souls, or Spirits, and their operation upon one another, abbrev. 17. 306.

Euclidis Elementa Geometrica novo ordine demonstrata, 15. 261.

Hon. Fabri Sic. Jef. Tract. duo i. de Plantis & Gener. Animalium. 2. de Homine; abbrev. 18. 325.

Felthien of the most excellent Paintings, 21. 383.

Catalogue of Fermats Writings, and his Character, 1. 15.

De Graeff, deucci Pansereatici natura & usi, abbrev. 10. 178.

Guavini Placita Philosophica, abbrev. 20. 385.

Heselenius's Prodomus Cometicus, abbrev. 6. 104. His Descriptio Cometica cum Manis, abbrev. 27. 301.


Hook's Micrographical and Telescopical Observations, Philosophical Instruments and Inventions, abbrev. 2. 19.

Kircher's Mundus Subterraneus, abbrev. 6. 109.

Lower's Vindication of Dr. Willis de Fabribus, 4. 77.

Meret's Pinax Rerum Naturalium Britannis, continens Vegetabilis, Animalia & Puffilia, in hac infula reperta, inchoatus; abbrev. 20. 364.

Parker's Tentamina Physico Theologica, abbrev. 18. 324.

Redi an Italian Philosopher, of Vipers, abbrev. 9. 160.

Riccioli's Astronomia Reformata, Volumen quartum abbrev. n. 22.

sientis de Mufculis & Glandulis observato-
um Specimen; cum duabus Epistolis Anatonicis; abbrev. 10. 176.
Thevenet's Relation of curious Voyages, with
a Geographical description of China, abbr.
14. 248.
The English Vineyard vindicated, 15. 162.
Hicco Vellus de Origine Nili, abbreviated,
17. 394.
Vlug-Beig great Grand-child to the famous
Tamerlane, his Catalogue of fixt Stars, with
their Longitudes, Latitudes, and Magnitudes,
taken at Samarcand, A. 1437. Translated out of a Persian M. S. by M. Hyde,
Keeper of the Boylean Library, 8. 145.
The Burning Concave of M. de Vilette in
Lyons, burning and melting any matter (very
few excepted.) What, and How, and at
what distance. The proportion; and com-
pared with other rare burning Concaves, 6.
96.

C.

In China very ancient Books found of the
nature and vertues of Herbs, Trees, and
Stones, 14. 249.
The Root there called Ginseng, very rento-
orative and cordial, recovering agonizing
persons, sold there each pound for three pounds
of Silver, 14. 249.
China Dishes how made there, ibid.
A way found in Europe to make China-Dishes,
7. 127.
Chymists in China pretend to make Gold, and
promise Immortality, 14. 249.
Cold, see M. Boyle's History; abbrev. More
Inquiries, and some answers touching Cold,
19. 344. How Cold may be produced in
hottest Summers by Sal Armoniaci, dis-
covered by M. Boyle, 15. 255. Some sugges-
tions for remedies against Cold, by D. Beale,
21. 379.
Comets. The motions of the Comet of Dec-
emb. 1664. predicted, 1. 3. Cassini con-
curs, 21. 17. Autours, who first predicted
the motion, reflects upon Cassini, 2. 18, and
predicts the motions of the second Comet of
March, April 1665. n. 3. 36.
Contrary Gues and Discourages some at large con-
cerning Comets. n. 1. p. 3. n. 3. p. 17. 18.
n. 3. p. 36. n. 6. p. 104. n. 9. p. 150.
n. 17. p. 301. Many considerables abbrevi-

D.

Amps in Mines pernicious, 3. 44. and
how killing, ibid.
Directions for Seamen bound for far Voyages,
by M. Rook, 8. 140. Mr. Boyle's Inquiries,
18. 315.
Philosophical Directions or Inquiries for such
as Travel into Turkey, 20. 360.
Directions, or general Heads for a natural His-
tory of a Country, by M. Boyle, 11.
186.
Directions or Inquiries concerning Mines, by
the same, 19. 330.
Diamonds where, and how the fairest are dis-
cover'd, 18. 317.

E.

The Earthquake about Oxford, Anno
1665. described by D. Wallis, 10. 181.
by M. Boyle, 11. 179. noting the Con-
comitants thereof by Baroscope and Thermo-
meter.
The Earth's Diurnal motion prov'd by the
motion of the Comets, 1. 6. & 7. especially
by the slow motion of the second Comet, 3.
39. See M. Aurois, confirm'd by M. He-
velius, 6. 105. confirm'd also by the Tides
at Sea, 16. 265.
The Eclipse of June 22. 1666. accurately ob-
serve'd at London, 17. 245. at Madrid,
ibid. at Paris, 17. 246. at Danzick,
drawn in accurate Cuts, n. 19. 347. n. 21.
p. 369.

Elephants: How to escape, or to combat with
them, 18. 328.

Eels discover'd under Banks in Hoar-Frost:
by the Greens of the Banks approaching, 18.
383.

F.

The Fleesy parts of the Body which are
usually repulse, and do seem void of
Vessels, are argued to be full of Vessels,
by D. King, 18. 316.

F greater sometimes Touch, how fanatic,
by several Examples, 12. 206.
Frigions: much used by Phylinians in China
with good success, 14. 249.

Ggg G. Geom-
The method of dividing the Circumference of a Circle into the most convenient Numbers of equal Parts, for Mesurings, as also the Right Method of marking of the same Particulars, and the several Points of the Compass, so as to make them all of an equal Value.

First, let the Circle be divided into 360 Degrees, and then apply the same to all other Circumferences in like manner.

Second, divide the Circle into 90 Degrees, and then apply the same to all other Circumferences in like manner.

Third, divide the Circle into 45 Degrees, and then apply the same to all other Circumferences in like manner.

Fourth, divide the Circle into 30 Degrees, and then apply the same to all other Circumferences in like manner.

Fifth, divide the Circle into 20 Degrees, and then apply the same to all other Circumferences in like manner.

Sixth, divide the Circle into 15 Degrees, and then apply the same to all other Circumferences in like manner.

Seventh, divide the Circle into 10 Degrees, and then apply the same to all other Circumferences in like manner.

Eighth, divide the Circle into 6 Degrees, and then apply the same to all other Circumferences in like manner.

Ninth, divide the Circle into 5 Degrees, and then apply the same to all other Circumferences in like manner.

Tenth, divide the Circle into 4 Degrees, and then apply the same to all other Circumferences in like manner.

Eleventh, divide the Circle into 3 Degrees, and then apply the same to all other Circumferences in like manner.

Twelfth, divide the Circle into 2 Degrees, and then apply the same to all other Circumferences in like manner.

Thirteenth, divide the Circle into 1 Degree, and then apply the same to all other Circumferences in like manner.

Fourteenth, divide the Circle into 1/2 Degree, and then apply the same to all other Circumferences in like manner.

Fifteenth, divide the Circle into 1/4 Degree, and then apply the same to all other Circumferences in like manner.

Sixteenth, divide the Circle into 1/8 Degree, and then apply the same to all other Circumferences in like manner.

Seventeenth, divide the Circle into 1/16 Degree, and then apply the same to all other Circumferences in like manner.

Eighteenth, divide the Circle into 1/32 Degree, and then apply the same to all other Circumferences in like manner.

Nineteenth, divide the Circle into 1/64 Degree, and then apply the same to all other Circumferences in like manner.

Twentieth, divide the Circle into 1/128 Degree, and then apply the same to all other Circumferences in like manner.

Twenty-first, divide the Circle into 1/256 Degree, and then apply the same to all other Circumferences in like manner.

Twenty-second, divide the Circle into 1/512 Degree, and then apply the same to all other Circumferences in like manner.

Twenty-third, divide the Circle into 1/1024 Degree, and then apply the same to all other Circumferences in like manner.

Twenty-fourth, divide the Circle into 1/2048 Degree, and then apply the same to all other Circumferences in like manner.

Twenty-fifth, divide the Circle into 1/4096 Degree, and then apply the same to all other Circumferences in like manner.

Twenty-sixth, divide the Circle into 1/8192 Degree, and then apply the same to all other Circumferences in like manner.

Twenty-seventh, divide the Circle into 1/16384 Degree, and then apply the same to all other Circumferences in like manner.

Twenty-eighth, divide the Circle into 1/32768 Degree, and then apply the same to all other Circumferences in like manner.

Twenty-ninth, divide the Circle into 1/65536 Degree, and then apply the same to all other Circumferences in like manner.

Thirtieth, divide the Circle into 1/131072 Degree, and then apply the same to all other Circumferences in like manner.

Thirty-first, divide the Circle into 1/262144 Degree, and then apply the same to all other Circumferences in like manner.

Thirty-second, divide the Circle into 1/524288 Degree, and then apply the same to all other Circumferences in like manner.

Thirty-third, divide the Circle into 1/1048576 Degree, and then apply the same to all other Circumferences in like manner.
Ocean, what Seas may be joined with it, 3. 41.

Optick, Campani's Glasses do excell Divini's; as safe by them to distinguish people at four Leagues distance, 2. 131. and 12. 289. What they discover in Jupiter and Saturn, 1. 1., and 2. The proportions of Apertures in Perspectives reduced to a Table by M. Auzout, 4. 55. Animated upon by M. Hook, 4. 69.

How to Illuminate Objects to whatsoever proportion, proposed by M. Auzout, 4. 75.

Hevelius, Hugenius, and some in England, endeavour to improve Optick Glasses, 6. 98.


Divini makes good Optick Glasses of Rock-chystal, that had veins (if he mislook not somewhat else for veins) 20. 362.

To measure the distances of Objects on earth by a Telescope, undertaken by M. Auzout, and others of the Royal Society, 7. 123.

How a Telescope of a few feet in Diameter may draw some hundreds of feet, 7. 127.

How a Glass of a small convex-sphere may be made to reflect the Rayes of Light to a Focus at a far greater distance than is usual, 12. 202.

Parley, to make it shoot out of the ground in a few hours, see Hon. Fabri 18. 325.

Pictures, a curious way in France of making lively Pictures in Wax, and Maps in a low relieves, 6. 99.

The cause why Pictures seem to look upon all Beholders, on which fide soever they place themselves, 18. 326.

Ancient Paintings compar'd with the Modern, and a judgment of the Paintings in several Ages, their perfections, and defects, see M. Felibien, 21. 383.

Petrification, in the wombs of Women, 18. 210. in a Calf in the Cows womb, 110. Stones found in the heart of the Earl of Belcart's, 5. 86. Part of an Film by incision, or otherwise, petrified a foot above the root and ground, 19. 329. Wood petrified in a sandy ground in England; and of a Stone like a Bone or Osteocolla, 6. 101.

A Stone of excellent virtues found in the head of a Serpent in the Indies, 6. 102. The causes of Petrification inquired, 28. 320.

Planets, see Jupiter, Mars, Saturn, Sun, Moon; which are turbined, and which not, 8. 143. To find the true distances of the Sun and Moon from the earth, 9. 191.

Physicons of China commended, see Medecins.

Preservation, to preserve small Birds taken out of the shell, or other Eats' for discoveries, 12. 198.

Pulser of the Sick how diligently, and to what good purposes observ'd in China, 14. 249.

Rainbows strangely posited, 13. 219.

Raining of Ashes, and how, 21. 377.

Rice prosper's best in watery places, see Maribres, 18. 318.

Salt, how it extinguishes fire, and seeds by licking Indian earths, 21. 377.

Salt by excessive use stifles, and destroys the body, 8. 138.

Salt-Springs, see Springs.

Salt-Peyster how made in the Moguls Dominions, 6. 103.

The proportion of Salt in best Salt-Springs; and what grounds or signs of best Salt, 8. 136.

Sea-fluxes, the cause proposed by way of a new Theory, by Dr. Wallis, 16. 263. see Tydes, Seas, whether they may be united, 3. 41.

Silk-Worms and Silk-Trade solicited, 5. 87. and 2. 26. and 12. 201.

Snakes, how they differ from Vipers, 8. 138.

Rattle-Snakes, how sometimes kill'd in Virginia, 3. 43. and 4. 78.

Snow-houses directed, in how to preserve Ice and Snow in Chaffe, 8. 139.

Springs, of peculiar note, n. 7. 117. n. 8. 133. 135. and 136, n. 18. 325.
Thee, in China and what; and how exchanged there for dried leaves of Sage by the Dutch, 14. 249.

W.

W.

Hale-fishing about Bermudas, and New-England, how it is performed, n. 1. 11. n. 8. 132.

Wind, how to be raised by the fall of water, without any Bellows, 2. 25. shewed in a draught.

Worms, that eat holes in stones, feeding on stone, 18. 321.
The more

Natural Method.

I. A Natural History of all Countries and Places, is the foundation for Solid Philosophy. See Directions, Inquiries, and Instructions for a Natural History of a Country, n. 11. p. 186.

See it in part exemplified in the History of England, begun by Dr. Mereit in his Pinax, n. 20. 364.

See the cause of Tydes proposed by D. Wallis, n. 16. 263.

See the further Examination by a severe History of Tydes, Winds, and other Concomitants or Adherents, directed, n. 17. n. 18, n. 21.

See the Inquiries concerning the Seas, and Sea-water, n. 18. 315.

See Directions for Seamen bound for far Voyages, n. 140.


Mr. Boyle's Directions and Inquiries touching Mines, n. 19. 330.

Philosophical Directions and Inquiries for such as Travel into Turky, n. 20. 360.

The Relation of M. de Bourgeois, n. 18. 324.

M. Thevenot's Relation of divers curious Voyages, &c. more particularly of China, n. 4. 248.

The causes of the inundation of the Nile, disputed by Della Chambre and Vossius. In the Life of Book.

See Mr. Boyle's Mechanical Deductions, and Chemical Demonstrations of the Origin of Forms and Qualities, n. 11. 191.

See the Application of these Mechanical Principles more particularly to the Nature, Operation, and Generation of Plants and Animals, and to our humane Contexure, in a Geometrical method, by Hon. Fabric, n. 13. 325.

See Mr. Boyle's History of Cold and Thermometers, n. 1. p. 8. n. 3. p. 46.

The History of Winds and Weather, and all changes of the Air (especially in relation to the weight) observable by the Baroscope, n. 9. n. 10, n. 11.

Light, some special search into the causes, and some peculiar Examples. See above in Light.

Petrisation solicited, see Petrisation, Stone.

The Earths Diurnal Rotation, see Earth suprâ.

Adventurous Effays in Natural Philosophy, see Guarini, n. 20. 365.

Earthquakes, and their Concomitants observed, n. 10. n. 11.

The effects of Thunder and Lightning examined, see Thunder, n. 13. 222. n. 14. 247.

The raining of Ashes and Sand at great distance from the Mount Vesuvius, see Rains, n. 21. 377.

Springs, and Waters of peculiar Note, see Springs.

Insects in Swarms how begotten; pestilential, and how destroyed, n. 1. 137.

Monsters, or Irregularities in Nature. The Calf, Colt, suprâ.

Four Suns at once, and two strange Rainbows, n. 13. 219.

See the stational position and tendency or gravitation of Liquids, in Mr. Boyle's Hydrostatical Paradoxes, n. 145.

See in M. Hook's Micrography, a History of minute Bodies, or rather of the minute and heretofore unseen parts of Bodies; it being a main part of Philosophy, by an artificial reduction of all gross parts of Nature to a closer inspection.

Medicinals, see Medicine. Physirians, China. Friction, Dr. Sydenham. Dr. Lowor, Friction, suprâ. n. 4. 77. n. 12. 206.

Anthropology, see Sveno de Musculis et Glandulis. How a juice in the flomack dissolves the shells of Crcesthilies, ibid.

Grasse de Succo Pancreatico; that flows from Vesicles, n. 18. 316. Blood degenerated to resemble milk, n. 6. 117. The Transfusion of
Salt too much stiffens and destroys the Body, 8. 138.

II. Singularities of Nature severely examind.
The ordering of Kermes for Color, n. 20. 362.
How the Salamander quencheth Fire, and lives by licking the Earth, n. 21. 377.
Whether the Hungarian Eelus like the Armetus, 1. 11.
Rattle-Snakes how kill’d in Virginia, 3. 43.
Snakes and Vipers how they differ, see Snakes above.
The Qualities and Productions of May-dew, 3. 7.
Damps in Mines how they kill, 3. 44.
Teeth growing in aged persons, 21. 380.
Stemns and Expirations of the Body how stopp’d, and the stoppage dangerous or mortal, 8. 138.
Shining Worms in Oysters, 12. 203.

III. Arts, or Aids for the discovery or use of things Natural.
See Artificial Instruments in the Table.
Agriculture, see the Inquiries, 5. 91.
English Vineyards vindicated, see in the Catalogue of Books.
Geometry, see Euclid methodized for Facility, Fermat; in the Catalogue of Book.
Astronomy, see Astronomical Remarks. Bulbaletus, Hevelius, Comets, Planets, Saturn, Jupiter, Mars, Sun, Moon, Eclipses.
Opticks, see that Head in the Table.

Picture, see that Head in P. and Felibien in the Catalogue of Books.
How to paint Marbles within, see the Head Marble.
Pendulum-Watches to ascertain Longitudes at Sea, 1. 13.
Whale-fishing about Bermudas, 1. 11. and 8. 132.
Silk-trade solicited in France, Virginia, see Silk in the Table.
Feces how to be found in Frosts, 17. 323.
Winds raised to blow by the fall of water without Bellows, 1. 25. shew’d in a Cist.
Elephants enraged, how to engage or subdue, 16. 328.
S seas and vast waters, whether they may be united to the main Ocean, 3. 41.
To proportion the distance necessary to burn Bodies by the Sun, and shewing, how the Reflections from the Moon and other Planets do not burn, 4. 69.
The Art of making Salt-Peter, as practis’d in the Megals Dominions, 6. 103.
To make China-Dishes, 14. 249. expected from Seigneur Septilio to be made in Europe, 7. 127.
To convey blood of one Animal, or other Liquors, into the blood of another Animal, 20. 353.
To preserve Ice and Snow by Chaff, 8. 138.
To preserve Ships from being Worm-eaten, 11. 190.
To preserve Birds taken out of the Eggs, or other small Creatures, for Anatomical, or other Discoveries, 12. 199.
To allay the heat in hottest Summer, for Diet or Delight, 15. 255.
Remedies against extreme Cold suggested, 21. 379.
Trees of Oak as black as Ebony discover’d, and taken up out of Moors and Marshes in draughty weather, 11. 323.

Note,
That though in this last Head there is repeated the Transfusion of Blood, because the Operation is an Art requiring diligence, and a practis’d hand to perform it for all advantageous Discoveries, and so to be distinguish’d from the Anatomical Account; yet that there is not affected noise and number, may well appear by reviewing and comparing the particulars of Artificial Instruments in the Table,
In the SAVOY,
Printed by T. N. for John Martyn, and
James Allestry, Printers to the Royal Socie-
ty: And are to be sold at their Shop with-
out Temple-Bar, and in Duck-lane, 1667.